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Abstract 

The aim of this work is to model the pathway from caller to recipient of GSM      

telecommunication in Nigeria, with a view to produce a model that can help reduce the problem 

of drop calls experienced in the industry. Our dependent variable was total successful calls 

against 9 explanatory variables. An initial multiple linear regression produced low R2 of 25.5%. 

Diagnostics interventions of some transformations with removal of leverage points improved the 

R2 to 82%. Two model selection techniques, Mallow’s Cp and adjusted R2 were used to obtain 

the best parsimonious model, which contained 7 explanatory variables. The results show that the 

main variables that explain total successful call are Percentage drop calls, Proportion of 

transmission failure, Call traffic Congestion, Control channel failure, Earlang, P_HR and 

Availability. We, therefore, advise telecommunication industries in Nigeria to use the model to 

counteract the problem of drop calls. 

Key words:  Telecommunication pathway, drop calls, Box-Cox transformation, Mallow’s Cp, 

model selection.   

 

1. Introduction 

The Global System of Mobile Telecommunication (GSM) in Nigeria came into mainstream in 

2001 when the deregulation of the subsector of the economy gave way to private involvement. 

Until then, the Nigerian Telecommunication (NITEL) was the only operator in the market. The 

deregulation was generally accepted and brought hope of a better society to Nigerians. The 

industry has since grown from 500000 NITEL subscribers to about 65 million mobile subscribers 

(Fadeyibi 2009). The advantages of the wireless mobile telecommunication system over the fixed 
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system are numerous. The benefits include competition in the market, affordability, employment 

opportunity, revenue generation and increased accessibility even in rural areas.  

Despite these benefits subscribers still have ugly stories to tell as mobile telecommunication 

in Nigeria is characterized by high drop calls, among other problems (Fadeyibi 2009). Drop call 

is the failure of a call to successfully move from the caller to the receiver. The problem of drop 

calls cuts across all GSM networks and sometimes makes the use of GSM very frustrating. In this 

work, our objective is to model the pathway of a GSM call from the caller to the receiver using 

multiple linear regression and model selection techniques. Our response variable is total 

successful calls of a GSM network and 9 explanatory variables claimed by mobile network 

operators to affect the success of a call.  

We propose a multiple linear regression model of the form:   Y=Xβ + e; 

while 

Y is a vector of the response variable 

X is the design matrix 

β is the vector of regression parameters  

e is the vector of the random noise 

With the assumptions that ),(~ 2IXY  where σ2 is the variance of the random noise.  

Adeleke et al. (2007) has illustrated the use of Box-Cox transformation to correct multiple 

assumption violations in regression analysis of telecommunication data. In this work, we intend 

to use some model selection techniques to select variables that actually explain total successful 

calls and build the best parsimonious model for telecommunication call pathway in Nigeria. 

The remainder of the article is organized as follows: section 2 discusses relevant 

literature; in section 3, we dwell on data description; section 4 is on methods used, section 5 

discusses the results and conclusion is in section 6. 

 

2. Relevant Literature on Model Selection 

Model selection is very important in multiple linear regressions. This is so because the 

true model is not always known and some of the variables used might not have significant 

explanatory power on the response variable. However, the chosen model is assumed to be the true 

model and analysis and inference are done accordingly (Hurvich & Tsai, 1990). 
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Many model selection techniques have been proposed in the literature. They include F-

test, Akaike Information Criterion (AIC), Mallow’s Cp, exhaustive search, stepwise methods, 

adjusted R2, forward and backward procedures. Others are cross-validation, Baye’s factor, Bayes 

Information Criterion (BIC), Bayesian model averaging, Hannan-Quinn Criterion (HQC), 

LASSO, etc. These techniques can be classified as Bayesian or frequentist (information-based) 

techniques. In comparison, the Bayesian model techniques are generally statistically consistent, 

but sometimes achieve slower rates of convergence than other methods (Erven, et al 2009). 

Kwon, et al, 2009 studied the performance of some Bayesian and information-theoretic model 

selection techniques and concluded that they work well in small samples as well as large samples. 

This helps to avoid cumbersome computations with large samples. 

Applications of the various model selection techniques in different situations have been 

documented. For example, to explain the effectiveness of advertisement, Lee (2016) used LASSO 

and AIC to predict attention score based on 23 predictor variables from questionnaire responses; 

and found that the LASSO method provided simpler and more stable results. Also, Kadane and 

Lazar (2004) evaluate the various proposed frequentist and Bayesian techniques, including AIC, 

Bayes Factors, BIC, Mallow's Cp, Model Averaging, Subset Selection, from a decision-theoretic 

perspective and proposed a unifying conceptual framework which can guide people on when to 

choose Bayesian or frequentist model selection techniques. In another study involving the drying 

characteristics of fresh grains, Iwundu and Efezino (2015) examine the adequacy of variable 

selection techniques using some model selection criteria namely, R2, R2adj, PRESS, AIC and Cp-

statistic to determine the most suitable model; and in addition, illustrate the use of D-optimality 

criterion for measuring the goodness and adequacy of regression models. In order to propose a 

hybrid fuzzy time series model to forecast weather, Agrawal and Qureshi (2014) employed root 

mean square error, R2 and moving average.  

The task of model choice is critical and challenging. In a study on system identification 

and model signaling, Pintelon et al. (1997) posits that one major problem of model selection 

techniques is detection of under-modelling. In line with this, Kadane & Lazar (2004) notes that 

there may be cases when model choice is unobjectionable and other cases when the choice is 

misleading. Supporting these views, Hurvich & Tsai, 1990 maintains that “model selection stage 

of linear regression induces some difficulties in the analysis that if not well handled can affect the 

validity of standard regression procedures”. These difficulties includes cases like inflated R2 

(Rencher & Pun, 1980) and biased estimates of mean squared prediction errors (Breiman, 1988). 

The goal of model selection is to select the best model that explains the given data. With this in 
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mind, Kundu & Murali, 1995 applies model selection techniques like AIC, BIC, etc to linear 

regression so as to choose the best penalty function.  

Not much work, if any, has been done to select the best model that explains successful 

calls of a GSM network. In this work, we intend to select signaling variables on the pathway of a 

GSM call that best explains the success of the call.   

 

3. Data Description and Exploration 

3.1 Data Description 

The data represents 752 observations which were obtained on the response variable Y and 

9 explanatory variables. The response variable is the total successful G.S.M calls (TSC), 

representing the calls that successfully go through the pathway of a G.S.M call from the maker to 

the recipient. A GSM call moves from the caller to the Base Transceiver Station (BTS) to the 

Base Station Controller (BSC) to the Mobile Switching Center (MCS), where the switching takes 

place; then, to BTS2, to BSC2 and finally, to the receiving mobile phone. There are a lot of 

signaling that go on between all these points and the factors which are claimed to determine a 

successful call (TSC) are Percentage drop calls (X1), Power transmission failure (X2), Call traffic 

Congestion (X3), Power control Congestion (X4), Control channel failure (X5), Power supply 

failure (X6), Earlang or System run time (X7), P_HR (X8) and Availability (X9). A general 

characteristic of the data is that some observations of Y and the X variables are extremely high or 

low and these largely corresponded to periods of systems failure or malfunction. Analysis in due 

course shows that these largely constituted leverage points.  

 

3.2 Exploratory Data Analysis 

 Exploratory Data Analysis shows that both response and regressor variables showed clear 

departures from normality, whereas the assumption of the linear model (in matrix form) 

eXY   is that ),(~ 2IXY  .  

 

4. Methodology 

4.1 Multiple Linear Regression Model 

4.1.1 Overview 
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Multiple Linear Regression Model is a type of model in which a dependent variable y is 

determined by two or more explanatory variables X1, X2,…, Xk (Omotosho, 2000). The model is 

of the form eXY   .  is estimable by YXXX  1)(̂ , with variance 

.)()ˆ( 12  XXV 
 

We determine the scalar 
2 using the estimator, 

kn

XXYY
S






 ˆˆ
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, where n is the number of observations and k is the number of 

parameters. Accordingly, a t-test given by 
i

i

VS
t

0ˆ
* 



, where Vi is the ith diagonal element 

of 
1)( XX  is used to test the null hypothesis H0:  0i . H0 is rejected if t* is greater than 

critical t at a given significance level, say α = 0.05 (i.e, p < 0.05). 

 

4.1.2 Transformations 

Since the exploratory data analysis revealed departures from the normality assumption, 

deviations from other important assumptions like homoscedasticity and independence of the 

random noise were suspected. Therefore, there was need for a transformation that could correct 

all departures at the same time. Box-Cox transformation offers real opportunity. Before Box-Cox 

transformation on the response variable, a power transformation on the X variables was done to 

induce normality. 

4.1.3 Transformations on the Explanatory Variables 

We carried out various transformations of the X variables using simple power 

transformations. The method was computer intensive. For each Xi we applied: 

 



ii XX 1 ,                       (1) 

where λ is such that 1

iX  had the best Q-Q plot, that is, 1

iX  was closest to a normal distribution. 

The λ that could do this best was determined by dividing the interval (-3, 3) into 250 sub-

intervals. Then,   was that value in (-3, 3) which gave the best Q-Q plot. With the X’s 

transformed, we then ran another regression and R2 improved to 35%. The Q-Q plot of each 1

iX  

and the respective λ are shown Fig 1. 

 

4.1.4 The Box-Cox Transformation   
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Fig 1. Normal Q-Q plots of the transformed X variables 

When the residual vector of a regression analysis shows heteroscedastic error variances, 

non-normality and non-independence, “it is natural to seek a transformation that, so far as 

possible, both satisfies and combines information from the three desirata simultaneously” (Box, 
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Hunter & Hunter, 1978). This can be achieved through the method of maximum likelihood where 

the individual values of y (observations) are transformed into )(y   such that: 

1

)( 1










y

y
y


,          (2) 

The transformation in (2) is a Box-Cox transformation; where y , the geometric mean of y, is the 

scaling factor and  , the Box-Cox parameter, is the value at which the transformed data attains 

the smallest standard deviation or produces the smallest mean square error when a  

linear regression is fitted to the data. Many modifications have been proposed since the work of 

Box and Cox (Li, 2005). However, we choose the modification in (2) because of its relative 

simplicity. 

For various values of λ, we perform standard regression analysis on y(λ). “The Maximum 

likelihood values is that for which the residual sum of squares (Sλ, say) from the fitted model is 

minimized” (Box, Hunter & Hunter, 1978). Here a computer generated system chooses a λ, and 

on this basis transforms yi into  
1

)( 1
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Then a regression of  


 iioi XXY 9
1

91
1

1

)(
...  is run and the error sum of squares 

calculated. The λ which minimizes the error sum of squares is calculated. The λ for this Box-Cox 

transformation was 0.52 (see Fig 2). A regression after Box-Cox transformation improved R2 to 

75.5%. 
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Fig 2. Plot of SSE against Lambda for Box-Cox Transformations 

 

4.1.5 Removal of Leverage Points 
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Generally, leverage points are those points in a system where a small change in one thing 

can result in much change in every other thing. In regression analysis, a leverage point is a value 

of an independent variable X, which is far away from other values of that independent variable 

and can exert undue influence on the regression of the response variable on X. 

For this study, the very nature of the data itself made leverage points inevitable. For 

instance, successful call rates during system breakdown would be far from the norm. The residual 

versus the predicted plot showed this (see Fig 3). 
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Fig 3. Residual by Predicted Plot 

  

The leverage points are more vivid when one examines the separate leverage plots for the 

X variables. First of all, identification of a leverage point is based on the value of the diagonal 

element (mii) of the hat matrix (H) 

])([ 111 XXXXIH  ,                                                                                                         (3) 

where X is the design matrix and I is the identity matrix of order n. Thus, mii shows the amount of 

influence which yi has on the regression. If mii is more than 3 times the average of the mii’s then, 

it was removed (Hoaghin & Welsch 1978). In theory, not all leverage points are removable but in 

the instant data, there is a clear case for removal as most of these points correspond to the 

abnormal period mentioned earlier. With the removal of leverage points, R2 improved to 82%.    

 

4.2 Model Selection 

Two known criterion-based methods of model selection were employed, the adjusted R2 

and Mallow’s Cp statistics.  

 

4.2.1 The Adjusted R2 Criterion 
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R2 is defined as the ratio of the sum of squares of regression to the total sum of squares, 

i.e., 
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The problem with using R2 as a criterion, for comparing models of different sizes, is that 

the sum of squares for regression, and hence R2 itself increases with increasing variables in the 

model. Therefore, the adjusted R2, which takes into consideration the number of parameters in the 

model is usually used instead (Kadane & Lazar, 2004). Adjusted R2 is defined as:  
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where n is the sample size and p is the number of parameters in the model. The best model will 

correspond to the largest adjusted R2. 

4.2.2 Mallow’s Cp Statistic: 

Another criterion used is the Cp statistic. It is defined as  

 

)2(ˆ 2 np

RSS
C

p

p



  

(6) 

 

where RSSp represents the residual sum of squares for a model with p terms and 2̂  the random 

noise variance estimate based on the full model (Mallow, 1973). If the model is good, it is 

expected that Cp is unbiased estimator of p and therefore, should itself be approximately equal to 

p. For a full model with say m parameters, this is exactly true, ie, Cm = m (Kadane & Lazar, 

2004). This feature makes the criterion useful to compare models of the same size and its purpose 

is to guide the researcher in the process of model selection (George 2000). Models with smallest 

Cp are desirable.  

 

4.2.3 Application to data  

9



 

Out of 651 complete cases, 512 models were fit for our data. Various models to describe 

the relationship between Y and 9 predictor variables were fit containing combinations of from 0 

to 9 variables. The statistics tabulated include the mean squared error (MSE), the adjusted R2 and 

Mallow’s Cp values. 

To determine which model is best according to the two criterion discussed, the result was 

summarized according to models with the largest adjusted R2 and models with the smallest Cp. 

Based on these the best model was selected to contain 7 independent Variables: X1, X2, X3, X5, X7, 

X8 and X9. 

It is important to note that both criteria resulted in the same model. This is in line with 

Kennard (1971), who maintains that the Cp statistic is closely related to the adjusted R2. 

 

5. Results and Discussion 

5.1 Results of Initial Regression 

 

Table 5.1. Results of Initial Regression 

 

RSquare   0.255387 

RSquare Adj   0.2458 

Root Mean Square Error   244.8889 

Mean of Response   251.4034 

Observations (or Sum Wgts)   709 

 

 

 

Parameter Estimates 
Term Estimate Std Error t Ratio Prob>|t| 

Intercept -97.77922 58.99176 -1.66 0.0979 

% Drop (X1) -0.032577 0.024526 -1.33 0.1845 

PtFail (X2) 0.8088859 0.532861 1.52 0.1295 

Congestion (X3) 12.626796 6.874496 1.84 0.0667 

pcCong (X4) -2.374931 2.071086 -1.15 0.2519 

Control Channel (X5) 0.0554714 0.055827 0.99 0.3207 

PsFail (X6) -0.343025 0.389226 -0.88 0.3785 

Erlang (X7) 0.2332903 0.167157 1.4 0.1633 

P_HR (X8) -0.000423 0.027041 -0.02 0.9875 

Availability (X9) 3.9559168 0.48325 8.19 <.0001 
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An initial regression of the data shows a low R2 of 25.5% (see Table below). This is not a 

good fit, yet it is claimed that the 9 factors determine successful calls. The t-test shows that only 

availability is significant.  

 

5.1.2 Regression after Transformations on Response and Regressor Variables 

 
R Square     0.755234 

R Square Adj.   0.752122 

Root Mean Square Error   66.95807 

Mean of Response   242.3974 

Observations (or Sum Wgts)     718 

 

After a power transformation on the regressor and response variables, another regression ran 

shows an improvement over the first one using R2 (R2 = 75.52%). 

 

5.1.3 Regression after Removal of Leverage Points 

 

R square 0.820425 

R Square Adj 0.817903 

Root Mean Square Error 57.74261 

Mean of Response 243.863 

Observations (or Sum Wgts) 651 

 

Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 1179.2274 52.32196 22.54 <.0001 

X1 -127.8084 33.09964 -3.86 0.0001 

X2 -145.8531 27.23642 -5.36 <.0001 

X3 -0.797684 0.413363 -1.93 0.0541 

X4 0.0000844 0.001222 0.07 0.9449 

X5 -16.08319 9.072534 -1.77 0.0767 

X6 -0.461916 1.822434 -0.25 0.8 

X7 -1052.972 57.89197 -18.19 <.0001 

X8 -4.236453 0.572721 -7.4 <.0001 

X9 2.0939898 0.077348 27.07 <.0001 

 

The results show that R2 improved greatly to about 82% with the removal of leverages. This 

implies that the leverage values actually had undue influence on the results. However, only 5 

explanatory variables are statistically significant at 95% significance level. This calls for model 

selection to arrive at a reduced model.  

 

5.1.4 Multiple Regression with 7 independent Variables after Model Selection 
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Dependent Variable: Y 

Parameter Estimate Standard Error T Statistic p-value 

CONSTANT 1179.54 51.8063 22.7682 0.0000 

X1 -125.636 32.0358 -3.92172 0.0001 

X2 -142.992 24.6156 -5.80899 0.0000 

X3 -0.802294 0.411683 -1.94881 0.0518 

X5 -16.6165 8.63682 -1.92392 0.0548 

X7 -1056.6 55.683 -18.9752 0.0000 

X8 -4.25359 0.550803 -7.72252 0.0000 

X9 2.08945 0.0753184 27.7416 0.0000 

 

Analysis of Variance 

 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Model 9.76E+06 7 1.39E+06 419.61 0.0000 

Residual 2.14E+06 643 3324.21   

Total (Corr.)     1.19E+07 650    

 

The model selection procedure actually yielded 7 independent variables which significantly 

explain successful GSM calls. 

R-squared = 82.0405 percent 

R-squared (adjusted for d.f.) = 81.845 percent  

Standard Error of Est. = 57.6559 

Mean absolute error = 39.5314 

 

The above is the result of Multiple Linear regression to describe the relationship between Y 

and 7 explanatory variables. Two of the independent variables, X3 and X5 showed p-values greater 

than 0.05 which is not significant at 95% significance level. However, we decided not to drop the 

variables because the R2 appears to be stable (no further increase) at this point. Also, by not 

removing the variable we tried to avoid under modeling, which is a common problem in model 

selection. We, therefore, show 95% confidence intervals for estimates in the table below. 

Looking at the data and the random noise, we believe the confidence intervals for the coefficients 

are reasonably good. 

 

95% Confidence Intervals for coefficient estimates 

 
 

Parameter Estimate Standard Error Lower Limit 

Upper 

Limit 

CONSTANT 1179.54 51.8063 1077.81 1281.27 

X1 -125.636 32.0358 -188.543 -62.7279 

X2 -142.992 24.6156 -191.328 -94.655 
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X3 -0.802294 0.411683 -1.6107 0.0061135 

X5 -16.6165 8.63682 -33.5763 0.343294 

X7 -1056.6 55.683 -1165.94 -947.253 

X8 -4.25359 0.550803 -5.33518 -3.17199 

X9 2.08945 0.0753184 1.94155 2.23735 

 

6. Conclusion 

In this work, we applied the diagnostic interventions of Box-Cox and other power 

transformations and leverage removal to turn around a regression gone awry. The coefficient of 

determination R2 increased greatly from an initial value of about 25% to about 82%. However, in 

line with the principle of parsimony we used two model selection techniques, Mallow’s Cp and 

adjusted R2 to arrive at a reduced model adjudged to be the best.  

The best model contains 7 explanatory variables: X1 (percentage drop calls), X2 (Power 

transmission failure), X3 (Call traffic Congestion), X5 (Control channel failure), X7 (Earlang or 

system run time), X8 (P_HR) and X9 (Availability). Therefore, the best parsimonious model for 

GSM telecommunication pathway is: 

 

ŷ  = 1179.54 – 125.64X1 – 142.99X2 – 0.80X3 – 16.62X5 – 1056.60X7 – 4.25X8 + 2.09X9.   

 

We therefore advise that telecommunication industries in Nigeria should adopt this model 

to restructure their call pathway as this might reduce the problem of drop calls experienced by 

subscribers in the country. If Nigerian telecommunications operators can solve the problem of 

drop calls by adapting the proposed model, among other things they need to do, it will greatly 

enhance their services and confidence of the subscribers. 
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